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We calculate solutions for one-layer hydraulically controlled flows with viscosity.
Viscosity and bottom drag produce two key modifications to inviscid hydraulic
theory: the position of the hydraulic control point is altered, and the solution requires
knowledge of the velocity profile over the entire domain. Hence, analytically tractable
solutions are not generally possible and a numerical technique is developed to calculate
such flows.

In this paper, bottom drag and fluid viscosity are treated as independent parameters,
allowing the influence of each parameter on flux, flow dissipation and position of
hydraulic control to be quantified. We find that the flow is determined primarily by
the bottom drag, and, surprisingly, the largest perturbation from this state occurs for
intermediate values of fluid viscosity.

1. Introduction
Hydraulic theory is commonly used to predict density-driven flows over sills and

through channels. The application of this theory is underpinned by the concept of
hydraulic control, in which the flow field adjusts to a well-defined state at one or
more discrete points in the flow. The flow is termed critical at these control points,
corresponding physically to points at which the speed of long waves vanishes. To
apply hydraulic theory one must first determine the position of the control points.
The solution of a reduced set of governing equations at the control points is then
sufficient to specify the entire flow field.

Hydraulic techniques have the advantage that they provide a simplified (and often
analytically tractable) solution to a nonlinear flow problem. However, they can only
be used if one is willing to make a number of simplifying assumptions about the
flow. For example, traditional hydraulic theory is steady, inviscid, non-diffusive and
hydrostatic (e.g. Armi 1986). All of these assumptions are violated in most geophysical
applications of hydraulic theory; yet theoretical predictions both provide reasonable
estimates of flux and contribute towards our understanding of the physics of such
flows.

Attempts have been made to extend hydraulic theory to incorporate friction and
viscosity (as well as diffusion and non-hydrostatic effects). For example, Pratt (1986)
demonstrated that for hydraulically controlled one-layer flow over a sill, the addition
of bottom drag reduces the flux (assuming that upstream height remains constant)
and shifts the control point downstream of the sill (compared with the inviscid case
in which the control point is at the top of the sill). However, Pratt’s conclusions were
based on the assumption that the bottom drag is communicated instantly over the
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depth of the water column (to give a uniform velocity profile). Garrett & Gerdes
(2003) examined how control conditions are modified when velocity varies with depth.
They found that the introduction of velocity shear increases the long-wave speed, and
that control still corresponds to points where the wave speed matches the mean
flow speed. Thus control occurs at greater mean flow speeds. Garrett (2004) used this
result to argue that a vertical gradient in horizontal velocity (owing to the distribution
of bottom drag through the water column by internal viscosity) shifts the control
point back upstream, towards the sill crest. Garrett also predicts that under certain
assumptions viscous solutions can be obtained analytically.

Motivated by Garrett (2004) we review the derivation of controlled viscous
hydraulics for a single-layer flow with a free surface (§ 2). In § 3 we develop a numerical
solution method for single-layer hydraulically controlled flows, under the influence of
bottom drag and viscosity. Bottom drag and viscosity (which are physically related
in both turbulent and laminar flows) are independently specified in this numerical
study, allowing us to study a wide range of parameter space without using an
explicit parameterization for turbulence. In addition, by non-dimensionalizing the
equations we are able to predict and verify the role of the channel aspect ratio: longer
channels amplify the effects of both viscosity and bottom drag. We present results (§ 4)
which demonstrate that the simplifying assumptions which make Garrett’s solution
analytically tractable are not, in general, justifiable, and that this problem can only
be solved numerically.

2. Background theory
2.1. Governing equations

For steady viscous flow along a channel, with variable width b(x) and variable bottom
height H (x), the momentum equation in the x-direction is

uux + wuz = −g(Hx + hx) + (νuz)z, (2.1)

where h(x) is the height of the free surface, u(x, z) is the along-channel fluid velocity
(spanwise variations in velocity are assumed small), w(x, z) represents vertical velocity,
g is acceleration due to gravity and ν(z) a vertical viscosity coefficient. We have
assumed that pressure is hydrostatic and mass is conserved, or

(bu)x + (bw)z = 0. (2.2)

It is convenient to transform these equations to a coordinate system (X, η) where
X = x and η is an upstream height coordinate for a streamline (η = z at X = −L).
This transformation is written (following Killworth 1992; Engqvist & Hogg 2004)

∂

∂x
→ ∂

∂X
− zX

zη

∂

∂η
,

∂

∂z
→ 1

zη

∂

∂η
,

and applied to (2.2) with the identity w = uzX to give

(buzη)X = 0, (2.3)

which, upon integration, defines a flux per unit height, Q, that is constant along
streamlines

Q(η) = buzη. (2.4)
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The coordinate transformation applied to the momentum equation (2.1) yields

uuX = −g (HX + hX) +
1

zη

(
νuη

zη

)
η

. (2.5)

Equations (2.4) and (2.5) describe a system in which vertical friction is important,
and lateral friction is negligible. Thus, the results shown here will only strictly apply
in cases where the channel is wide relative to its depth, so that sidewall boundary
layers are thin, and thus the lateral shear, uy , is small. In the calculations below we
assume free slip conditions on the sidewalls.

2.2. Controlled flow

We now apply a similar methodology to Garrett (2004) to find controlled flow in this
coordinate system. The layer thickness h may be written

h ≡
∫ H+h

H

dz =

∫ η0

0

zη dη =

∫ η0

0

Q

bu
dη, (2.6)

where the origin of the z-axis is defined by the bottom of the channel at the
upstream end, and η0 is the height of the free surface in streamline coordinates
(which corresponds to the free-surface height at the upstream edge of the domain).
Here Garrett (2004) used Gill’s (1977) functional approach to find hydraulic control;
instead we follow an approach similar to Armi (1986) in which the X-derivative of
an energy equation is constrained by regularity conditions at control points. Thus we
differentiate (2.6) with respect to X,

hX = −
∫ η0

0

QuX

bu2
dη −

∫ η0

0

QbX

b2u
dη, (2.7)

and substitute for uX using (2.4) and (2.5), to give

hX

(
1 −

∫ η0

0

gQ

bu3
dη

)
= HX

∫ η0

0

gQ

bu3
dη −

∫ η0

0

1

u2

(
νuη

zη

)
η

dη − hbX

b
. (2.8)

This relationship is equivalent to that derived by Garrett & Gerdes (2003) for the case
of an inviscid shear flow. The regularity conditions are invoked, implying hydraulic
control, when the right-hand side of (2.8) is zero, in which case either hX = 0, or a
Froude number, F = 1. The Froude number is defined from (2.8) as follows:

1

F 2
≡

∫ η0

0

gQ

bu3
dη =

∫ H+h

H

g

u2
dz. (2.9)

This definition is equivalent to the usual layered Froude number, in that F 2 ∼ u2/gh

and the control condition (F 2 = 1) describes a state where long waves are arrested.
When viscosity is finite, Garrett (2004) showed that the control condition is

unchanged, but that the position of the control is altered such that the following
constraint (calculated by setting the bracketed term on the left-hand side of (2.8) to
zero) is satisfied: ∫ η0

0

1

u2

(
νuη

zη

)
η

dη = HX − hbX

b
. (2.10)

Integrating the left-hand side of (2.10) by parts gives∫ η0

0

2νu2
η

u3zη

dη − Cd =

∫ H+h

H

2ε

u3
dz − Cd = HX − hbX

b
, (2.11)
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where ε is the dissipation per unit mass. We have assumed that stress at the upper
surface is zero, whereas stress at the bottom of the channel is parameterized by a
quadratic drag law using u0(X), the velocity at the bottom of the channel, and a
dimensionless drag coefficient Cd:

ν
∂u

∂z

∣∣∣∣
z=H

= ν
uη

zη

∣∣∣∣
η=0

= Cdu
2
0. (2.12)

Equation (2.11) demonstrates that the addition of bottom drag shifts the control
point downstream of the topographic constriction (where the right-hand side is
negative), while internal dissipation returns it back upstream (to less negative values).
These control conditions differ from inviscid hydraulics in that the position of control
depends upon the velocity shear owing to viscosity (the left-hand side of (2.11), which
is non-zero). The viscous contribution may be small in some cases, but we argue
below that it prevents specific analytical solutions of the type proposed by Garrett
(2004). Thus we aim to calculate solutions numerically.

2.3. Dimensionless governing equations

The role of channel length and fluid depth in this problem is examined by introducing
the channel aspect ratio. We begin by non-dimensionalizing the equations derived
above using the upstream height above the sill (η0 − Hs) as the vertical length scale
and the upstream channel length L as the horizontal length scale. The velocity scale
is then (g(η0 − Hs))

1/2. Note that there are alternative horizontal and vertical length
scales describing the constriction geometry which could be used: we use the numerical
experiments to validate a posteriori this choice of length scales.

In terms of non-dimensional quantities, designated with a tilde, (2.5) becomes

ũũX̃ = −(H̃ X̃ + h̃X̃) +
1

ReAz̃η̃

(
ũη̃

z̃η̃

)
η̃

, (2.13)

where Re ≡ g1/2(η0 − Hs)
3/2/ν is the Reynolds number and A ≡ (η0 − Hs)/L is the

channel aspect ratio. It can then be shown that the equation for control position
(2.11) becomes

2

ReA

∫ 1

0

ũ2
η̃

ũ3z̃η̃

dη̃ − Cd

A
= H̃ X̃ − h̃b̃X̃

b̃
, (2.14)

where the stress at the bottom is parameterized as

ũη̃

z̃η̃

∣∣∣∣
η̃=0

= ReCdũ
2
0. (2.15)

These equations suggest that the full parameter space can be spanned by varying only
viscosity and bottom drag (or equivalently, the two dimensionless parameters 1/ReA
and Cd/A). Thus, decreasing aspect ratio is equivalent to increasing both viscosity and
bottom drag. This is consistent with the scaling proposed by Hogg, Ivey & Winters
(2001) for the case of bi-directional exchange flow.

3. Numerical solution
For clarity, we derive the numerical solution method in dimensional parameter

space (noting that we return to the dimensionless coordinates to interpret the results).
We assume a solution in which the flux per unit height Q is constant (with η) at the
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upstream end of the channel, and viscosity ν is uniform. Equation (2.4) can then be
used to eliminate zη in the momentum equation (2.5),

uX =
−g (HX + hX)

u
+

νb2

2Q2
(u2)ηη, (3.1)

and to rewrite (2.8),

hX

(
F 2 − 1

F 2

)
=

HX

F 2
− νb

2Q

∫ η0

0

(u2)ηη

u2
dη − hbX

b
. (3.2)

The momentum equation can be integrated with respect to X – this is achieved by
first calculating hX (from (3.2)), and then uX (3.1). The numerical integration starts
from the upstream end of the domain and continues until a control point is reached,
where F 2 = 1, and

νb

2Q

∫ η0

0

(u2)ηη

u2
dη = HX − hbX

b
. (3.3)

This technique works in principle, provided the flow is either sub- or supercritical.
However, near the control point (3.2) becomes singular. In such cases we use an
alternative equation, obtained from differentiating (2.8) and assuming F 2 ≈ 1 to give
a quadratic in y =(hX + HX),(

3Qg2

b

∫ η0

0

1

u5
dη

)
y2 −

(
5νgb

2Q

∫ η0

0

(u2)ηη

u4
dη − 2bX

b

)
y +

ν2b3

2Q3

∫ η0

0

((u2)ηη)
2

u3
dη

+HXX − νbX

2Q

∫ η0

0

(u2)ηη

u2
dη +

HXbX

b
− hbXX

b
+

hb2
X

b2
− νb

2Q

∫ η0

0

(u2)ηηX

u2
dη = 0.

(3.4)

Note that the term which represents the X-derivative of the shear (the last term
in (3.4)) is assumed small, and is ignored (this assumption has been confirmed
a posteriori ).

The numerical solution method for this problem involves a shooting algorithm.
For a given value of Q the local value of hX can be calculated from (3.2) (or (3.4)
if F 2 ≈ 1), and (3.1) used to spatially integrate u in X with first-order forward
differences. Thus we can integrate along the length of the channel: at the end of the
channel, or when F 2 > 1, we evaluate the control condition, modify Q and repeat
the above procedure. By iterating over Q until the solution satisfies both control
conditions, we can find a unique solution.

The numerical algorithm uses variable vertical resolution to allow better simulation
of the lower boundary layer. The dependence of results upon vertical resolution (not
shown here) demonstrates that the model obtains a smooth convergence of parameters
with high resolution. Therefore, we can balance vertical resolution (and hence CPU
time) with accuracy: in all experiments 40 gridpoints in the vertical are used. We
also see convergence of parameters with horizontal resolution; however, high internal
viscosity requires very fine horizontal resolution.

4. Results
Example solutions are presented in § 4.1 and § 4.2 to demonstrate the feasibility of

the method. We then return to validate the non-dimensionalization used, and discuss
the interpretation of solutions over the entire dimensionless parameter space.
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Figure 1. Sample solution (ν = 10−2 m2 s−1, Cd =10−2), showing (a) layer height and
streamlines; (b) Froude number (solid line), with inset highlighting the smooth behaviour
of the Froude number at the control point and depth-averaged dissipation per unit mass
(dashed line) as a function of X; (c) velocity field, with inset showing velocity profile at the
control point.

4.1. Specific solutions

Figure 1 shows the solution for flow over a sill in a constant-width channel with
viscosity ν = 0.01 m2 s−1 and dimensionless drag coefficient of Cd = 0.01. The fluid
depth is η0 = 1 m at the upstream end and the upstream channel length is L = 5 m.
The sill height is Hs = 0.3 m and the sill half-width at half-maximum height is � = 1 m
(corresponding to Cd/A ≈ 0.07 and 1/ReA ≈ 0.04). We use NX = 2 × 104 horizontal
grid points.

The solution is similar to those for inviscid overflows – the layer plunges over the
sill, and becomes supercritical near the sill top. However, the control point is 15 mm
downstream of the sill (see inset in figure 1b). Dissipation per unit mass (panel b)
is relatively small on the upstream side and increases in the lee of the sill, reaching
a maximum 3 m downstream. The velocity field shows the acceleration of the fluid
over the sill, and also highlights the development of vertical shear in the interior of
the flow. The profile at the control (panel c, inset) is constant near the top of the
water column, and sheared towards the lower boundary. This lower boundary layer
thickens downstream of the sill, thereby reducing the Froude number.

We repeat the above calculation for a flat-bottomed channel that varies in width,
rather than in depth. The constriction is half as wide as the full channel, and the results
are shown in figure 2. This diagram shows that there are few qualitative differences
between flow through a lateral contraction and flow over a sill. The layer accelerates
through the constriction, and the control point is shifted downstream (although not
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Figure 2. A solution with the same parameters as figure 1, but for a flat bottomed channel
that varies in width, reaching a smooth minimum at X = 0.

as far as in figure 1). Most dissipation occurs downstream of the contraction, and the
velocity shear is strongest near the lower boundary.

4.2. Velocity distribution at the control point

In the following experiments we use the channel geometry with a single sill (figure 1),
and vary viscosity over the range ν = [10−6, 0.25] m2 s−1, keeping bottom drag constant
Cd = 0.01 (or 1/ReA= [2.7 × 10−6, 0.68] and Cd/A ≈ 0.07). The upper limit of this
viscosity range is fixed by numerical resolution. In these experiments, horizontal
resolution (NX = 2 × 105) is constant. There is no lower limit in viscosity, but it is
shown below that flow is close to the inviscid solution at ν = 10−4 m2 s−1.

Figure 3 shows velocity profiles (solid lines) at the control point over the viscosity
range. When viscosity is low (e.g. figure 3a, where ν =10−6 m2 s−1) a thin bottom
boundary layer forms, whereas the rest of the velocity profile is uniform. At
intermediate values of viscosity the bottom drag influences a significant portion
of the water column. At higher values of viscosity the whole water column is affected
by the bottom drag, so that for ν ≈ 0.25 m2 s−1 the profile is only weakly dependent
upon depth. In other words, at very high or low values of viscosity the velocity profile
is more slab-like; at intermediate values of viscosity the velocity profile is more curved.

These results are in stark contrast to the analytical solution of Garrett (2004),
who assumes a balance between horizontal pressure gradients and viscous forces to
derive velocity profiles at the control that are quadratic – these predicted profiles are
shown in figure 3 by dashed lines, which in (a)–(c) are off scale. The assumption of a
balance between internal friction and the horizontal pressure gradient at the control
point is violated in all cases, including the highest viscosity case (figure 3e) where the



438 A. McC. Hogg and G. O. Hughes

1 2 3

0.4

0.5

0.6

0.7

(a) (b) (c) (d) (e)

z

u (m s–1)
1 2 3

0.4

0.5

0.6

0.7

u (m s–1)
1 2 3

0.4

0.5

0.6

0.7

u (m s–1)
1 2 3

0.4

0.5

0.6

0.7

u (m s–1)
1 2 3

0.4

0.5

0.6

0.7

u (m s–1)

Figure 3. Velocity profiles at the control point with Cd = 10−2 and channel geometry as for
figure 1. Solid black lines show numerical solution, dashed lines show parabolic prediction
(Garrett 2004). (a) ν = 10−6 m2 s−1; (b) ν = 10−4 m2 s−1; (c) ν = 10−3 m2 s−1; (d ) ν = 10−2 m2 s−1;
(e) ν = 0.25m2 s−1.

quadratic prediction is accurate only because shear is negligible. While the primary
balance of terms at the control (not shown) in every case is between inertia and
buoyancy, viscosity throughout the flow influences the velocity profile and thus the
control condition. Therefore, the solution requires knowledge of the time-history of
each fluid parcel at the control point and simplifying assumptions about the dynamics
are not applicable to the cases shown here.

4.3. Channel aspect ratio

The non-dimensional scaling which was introduced in § 2.3 can be tested by solutions
for several aspect ratios A across (1/ReA, Cd/A) space. In figure 4 we show
such solutions with either 1/ReA fixed (panels a, b) or Cd/A fixed (panels c, d).
Figure 4(a, c) shows the flux anomaly, which is defined relative to the flux qi in the
inviscid solution: q∗ = (qi − Qη0)/qi , while 4(b, d ) shows the dimensionless bottom
slope at the control point.

These results clearly show that the lack of dependence on aspect ratio is consistent
with the scaling proposed. The slight mismatch between some of the curves is
consistent with enhanced dissipation levels above a sill that occupies a different
fraction of the channel length (i.e. � is held constant, but L increases as A is decreased).
However, the data clearly indicate that the role of the sill width is secondary: the
dominant horizontal length scale is the channel length over which velocity shear
is generated, modifying both the control point and flux. Thus, in the dimensional
simulations the effect of doubling channel length is the same as doubling both
viscosity and bottom drag. In summary, while there appear to be three dimensionless
parameters (Re, Cd and A) in the problem, this can be reduced to two parameters
(1/ReA and Cd/A) using the proposed scaling.

4.4. Viscous hydraulics

The numerical solutions to this problem can be found over a wide range of viscosity
and bottom drag (and hence channel geometry). The range in viscosity is identical
to that used in figure 3, corresponding to 1/ReA= [2.7 × 10−6, 0.68]. The range in
bottom drag for these experiments corresponds to Cd/A= [7.1 × 10−5, 0.71]. There is
no lower limit on bottom drag, but there may be a physical upper limit where the
sill slope is insufficient to allow control points to occur (e.g. we reach this limit at
Cd ≈ 0.4 for the sill shape used here).
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Figure 4. (a) Dimensionless flux anomaly q∗, and (b) dimensionless bottom slope at control point
as a function of Cd/A for fixed 1/ReA. (c) Dimensionless flux anomaly q∗, and (d ) dimensionless
bottom slope at control point as a function of 1/ReA for fixed Cd/A. Five lines are plotted for
different values of aspect ratio A, demonstrating the accuracy of the scaling in (2.13) and (2.14).

We begin by showing as a function of effective viscosity 1/ReA and effective bottom
drag Cd/A the flux made dimensionless by the inviscid flux: q̃ = Qη0/qi (figure 5a).
Here the result is intuitive – both bottom drag and viscosity extract energy from
the flow, and thus reduce the flux. In general, both of these quantities are required
to make a significant impact on the flux. The maximum reduction of flux for the
parameters used is about 17 % from the inviscid case.

The dimensionless flux data are plotted using logarithmic axes in figure 5(b). The
qualitative result is not altered here: flux is a monotonic function of both 1/ReA and
Cd/A. However, this diagram shows the relative contribution of each parameter in
reducing the flux. For a given value of viscosity the flux decreases exponentially with
bottom drag. If bottom drag is held constant, increasing viscosity can reduce the flux,
but only to the point where the velocity becomes slab-like (see figure 3e). In short,
the upper limit for flux reduction is set by the bottom drag, and the internal viscosity
may perturb this flux.

The different roles of internal viscosity and bottom drag are further clarified by
plotting the control position, as indicated by the dimensionless bottom slope at the
control (figure 5c). Again, bottom drag dictates the position of the control point, and
viscosity acts to perturb that position. For both very small and very large viscosity,
the layer is slab-like (as shown in figure 3) so that the bottom drag sets the position
of the control point to be downstream of the sill, as predicted by Pratt (1986) using
the approximation of slab flow. While internal viscosity acts to shift the control point
back towards the sill (i.e. closer to X = 0), matching the general conclusions of Garrett
(2004), the shift is significant only at intermediate viscosities.
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Figure 5. (a) Dimensionless flux q̃; (b) q̃ plotted with logarithmic axes; (c) the logarithm of the
dimensionless bottom slope at the control point; and (d ) the ratio R of viscous and bottom drag
terms influencing the control position, as a function of 1/ReA and Cd/A. The dashed line in (b), (c)
and (d ) shows the position of the maximum relative contribution from internal dissipation, while
the dash-dot lines show 1/ReA = Cd/A.

We evaluate the relative influence on control position of internal dissipation and
boundary drag using (2.11). For the case considered here (with bX = 0) the ratio R of
the two components is

R ≡
(∫ η0

0

2νu2
η

u3zη

dη

)
/Cd, (4.1)

as was defined by Garrett (2004). The logarithm of R is plotted in figure 5(d ), which
shows that the primary influence on control position is due to bottom friction. Here,
the maximum relative contribution from internal viscosity is shown by the dashed
line. When internal viscosity is small, the flow is slab-like, and the control position is
dictated by bottom drag so that control moves downstream. For high viscosity, the flow
is also slab-like, and a similar value of R is found. Thus, the maximum effect of viscos-
ity on the control point occurs for intermediate, and not extreme, values of viscosity
(contrary to predictions based on Garrett’s simplifying assumptions; see his figure
10). In addition, R does not approach unity for any of the cases investigated here,
suggesting that the control point cannot be returned to the sill at any value of viscosity.

5. Discussion and conclusions
In this study we have artificially separated the effects of bottom drag and internal

viscosity on a hydraulic flow. This separation permits comparison of results with
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previous studies, and the development of physical intuition. However, in a real flow,
internal viscosity and bottom drag are related. Take, for example, a fully turbulent
open channel flow. This flow can be modelled using an eddy viscosity νt (assumed
constant) which can be estimated using a mixing-length argument (Tennekes &
Lumley 1972): νt ≈ u′l, where u′ is the characteristic scale of the r.m.s. turbulent
velocity fluctuation and l is the eddy length-scale. From Tennekes & Lumley (1972)
we find that

Cd ∼ 2

(
u′

U

)2

where U is the mean flow velocity. Furthermore, if we assume a balance between the
local rates of production P ∼ −u′w′∂U/∂z and dissipation ε =2νmsij sij of turbulent
kinetic energy, we obtain

P ∼ u′2 U

h
∼ ε ∼ u′3

l
,

where sij = ∂u′
i/∂xj represents the small-scale velocity gradients and νm is the mole-

cular viscosity (Tennekes & Lumley 1972). Thus, we can estimate the eddy viscosity
in terms of bottom drag:

νt ∼ CdUh. (5.1)

This is similar to the expression used by Garrett (2004). Equation (5.1) is an order
of magnitude argument, but does provide us with a means of estimating the relative
magnitudes of these quantities. Therefore, using the non-dimensional scaling we expect
1/ReA ∼ Cd/A, as shown by the dash-dot line in figure 5. The velocity profile of an
example close to satisfying this condition is shown in figure 3(d ).

This study also provides a sound physical basis upon which to derive and interpret
the Froude number (2.9). This definition can be compared with the Froude number
and critical condition defined by Nielsen, Pratt & Helfrich (2004) for a continuously
stratified, weakly viscous and diffusive flow over a sill:

F
2 ≡ u2

g′h
=

β

α
, (5.2)

where u is the mean velocity in the flowing layer, g′ the mean reduced gravity and α

and β are ‘shape coefficients’ calculated from velocity and density profiles, respectively.
The velocity shape coefficient is defined to be

α =

∫ H+h

H

u2 dz

hu2
, (5.3)

while β = 1 for the unstratified case considered here. Although the condition (5.2)
was derived assuming conditions of self-similarity, it was found to hold to a good
approximation in numerical simulations of continuously stratified flow with a free-slip
bottom boundary. If we calculate (5.2) in the present study, the control condition
becomes

αF
2
=

∫ H+h

H

u2 dz

gh2
= 1, (5.4)
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which differs substantially from (2.9). Equations (2.9) and (5.4) are equivalent only
when

1

h2

∫ H+h

H

u2 dz

∫ H+h

H

u−2 dz = 1. (5.5)

Expanding (5.5) about the mean velocity (and assuming that (α−1) � 1) demonstrates
that this condition is satisfied only when α = 1 (i.e. u does not vary with height).

The Froude number criterion derived by Nielsen et al. (2004) is exact only when
the flow is self-similar. The possibility of self-similar hydraulic solutions has been
demonstrated for inviscid stratified flows (Wood 1968; Engqvist & Hogg 2004), but
exact self-similarity is prohibited by the inclusion of friction (Garrett 2004). For the
case investigated here, the only self-similar solution is the trivial one in which u is
constant with height. However, in the reduced gravity case considered by Nielsen et al.
(2004), stratification may be sufficiently strong that the self-similar solution (while
not exact) provides a good estimate of control position. It follows that an extension
of the numerical technique used here to the continuously stratified case may help to
resolve conditions under which the self-similar condition is relevant – but this is well
beyond the scope of the current paper.

The numerical solution for viscous hydraulic flow presented here demonstrates
two important points. First, Garrett’s (2004) conclusion – that increasing bottom
drag shifts the control point downstream of the topographic constriction, whereas
increasing internal viscosity tends to return the control back upstream – is confirmed.
However, the effect of internal viscosity on the control point is second order when
compared with the effect of bottom drag, and it cannot restore the control position
back to the topographic constriction. Second, we find that the relative influence of
internal dissipation on the control position is maximum at an intermediate value of
viscosity. This occurs because the flow is slab-like at both large and small viscosity,
and the effect of internal dissipation on the control position is proportional to the
integrated square of the velocity shear.

The shape of the velocity profile at the control is sensitive to the flow viscosity
and bottom drag. The profiles depend upon both the physical parameters governing
the control position and the path history of each fluid parcel. This demonstrates that
the addition of viscosity to hydraulic theory removes the length-independence which
is often used to enable analytical solutions for these nonlinear flows. It follows that
future expansion of this numerical solution method (to multiple density layers and
bidirectional flow) will also need to integrate over the entire domain in order to find
relevant solutions.

Chris Garrett kindly provided comments and suggested improvements on the first
two drafts of this manuscript. Karl Helfrich and an anonymous referee also helped
to substantially improve the paper. Our thanks also to Peter Killworth and Ross
Griffiths who commented on a draft manuscript. A. M. H. is supported by an
Australian Research Council Postdoctoral Fellowship (DP0449851).
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